
Agile Security Requirements Engineering

Johan Peeters
Independent, yo@johanpeeters.com

Abstract
Agile processes have been deemed unsuitable for
security sensitive software development as the rigors
of assurance are seen to conflict with the lightweight
and informal nature of agile processes. However, such
apparently conflicting demands may be reconciled by
introducing the new notion of abuser stories in the
requirements domain. These extend the well-
established concept of user stories to achieve security
requirements traceability and thus open the door to
excellent security assurance, precisely because of their
informal and lightweight nature.

1. Introduction

This paper aims to extend agile practices to deal with
security in an informal, communicative and assurance-
driven spirit.
Agile processes are very effective at delivering
systems customers want. It is not the object of this
paper to establish the extent of this success, nor to
provide an exhaustive list of contributing factors.
Instead of reiterating the ground covered in [3] and
discussing the broad range of agile practices as applied
in security sensitive projects, this paper focuses on
what is arguably the biggest obstacle to their adoption,
namely, their lack of adequate tracking of security
requirements. As a result of the inability of current
agile practices to trace security requirements, agile
security assurance may be viewed as inadequate. This
is a shortcoming that is fairly easy to fix, however, by
adding abuser stories to the agile developers' palette. It
is not an inherent weakness as suggested in [9], for
example, where agile processes are argued to be
unsuitable for developing secure software due to the
lack of formality in agile requirement specifications.
There is nothing intrinsically virtuous in writing formal
specifications. They are only desirable to the extent
that they promote better assurance arguments. Despite
their informality, agile methods excel in functional
assurance. Indeed, test-driven development places
assurance squarely at the heart of development.
Moreover, assurance is better served by
communication with stakeholders than by formality.
Security's defining feature is the historical and
continued standoff between defenders and attackers.
No system is ever completely impervious to attack.
Attackers invariably respond with novel attacks as
engineers improve protection measures. A system that

is considered secure is in a state of unstable
equilibrium; its ability to fend off attacks ceases as its
environment changes, whether through technological
breakthrough or by an increase in motivation or
resources. To remain secure, the system must change
as the environment changes, preferably by anticipating
changes, certainly by embracing attackers' progress.
These observations suggest that the demands of
security engineering fit well with the agile mindset.
Section 2 summarizes the current agile approach to
requirements engineering. While it is recognized in
section 3 that current agile practices cannot deal with a
range of security requirements, this can be easily
rectified by extending traditional user stories with
abuser stories as discussed in section 4. Abuser stories
is a new concept, based on abuse cases. Abuse cases
were first discussed in [7]. Section 5 contains advice
on writing effective abuser stories.

2. Current Agile Requirements
Engineering Practices

Ill-understood requirements are the most common
cause of failure of software projects. In response, more
formal techniques for expressing requirements
unambiguously have been developed. However, agile
methods shun formal requirements documents. Instead,
they focus on continuous validation and feedback on
work in progress.
The position of requirements is ambivalent in agile
processes as relatively little effort is expended on
them, yet development is driven by requirements as
shown in paragraph 2.2.

2.1. User Stories

The role of user stories in agile development has been
described extensively in the literature, notably in [1].
Summarizing, user stories are brief, informal
descriptions of requirements written by the system's
customers. They illustrate how the system can be used
to create value.
User stories only provide enough detail to facilitate
estimations of how long each story will take to
implement with reasonable accuracy. Detailed
requirements are given in face to face, informal
meetings between the customer and developers at
implementation time.
User stories express a capability of the system under
development that delivers business value. They are

ranked according to their perceived value by the
customer. They acquire a score according to their
ranking. This score may vary throughout the software
development life cycle as the market changes.
Effort estimates, on the other hand, are made by
developers. Techniques for arriving at accurate
estimates have been described in [1] and are fun to
learn through the XP Game [5].

2.2. Planning

Agile development is iterative. This means that
development is divided into short periods, refered to as
iterations. The goal of each iteration is to realize the
greatest possible value within the available time frame.
At the end of each iteration, the system's customers
check whether the system satisfies the requirements
captured in the pertinent user stories by performing
each user story's acceptance tests.

3. The Case for Extending Agile Practices

It is not unusual to find security-related details in user
stories. Consider, for example, the following fragment
of a user story for a web gambling application:

... The user fills in the amount of the stake
and plays. ...

Development teams will soon realize that, in order to
generate sustainable business value, the application
must authenticate the user. The user story may
therefore be rewritten thus:

... The user authenticates himself with a
password. He fills in the amount of the stake
and plays. ...

In this instance, a countermeasure to the security
concern that the attacker may impersonate a user, can
indeed be expressed in the user story. Whether this is
advisable is debatable, but, in any case, some types of
attacks cannot be so expressed. Consider, for example,
an attacker who attempts to replace the random process
that decides gain or loss of a gamble. In such cases, an
extension to user stories is needed to describe the
threat. Abuser stories are the extensions proposed here.
They are discussed in detail in the next section.

4. Enhancing Agile Requirements
Engineering with Abuser Stories

4.1. Definition

Abuser stories identify how attackers may abuse the
system and jeopardize stakeholders' assets. Thus they
state systems' security requirements. Similar to user
stories, they do so briefly and informally.

System abuse, or attack, carries a cost which amounts
to negative business value.
Similar to ranking and scoring user stories according to
business value, abuser stories may be ranked and
scored according to the perceived threat they pose to
customers' assets. The ranking must take into account
both how much damage may be done and the
likelihood of a successful attack. The score given to
abuser stories should be commensurate with scores of
user stories. In other words, user story value and
abuser story cost should be equal if the abuser story is
expected to wipe out the earnings from the user story.
User story value may change as market conditions
change. Similarly, abuser story cost may change as the
environment changes. A technological breakthrough,
for example, may make an attack easier and therefore
more likely. Assets may become more attractive
targets. Adversaries may become better funded.
Similar systems may since have been secured, making
the system being developed the weakest in its class.
These are all factors external to the project. But
internal factors may also change the risk weighting of
an abuser story. For example, countermeasures taken in
previous iterations may increase the risk of an abuser
story, because it has become the easiest way to attack
the system.
Effort estimates are given for each abuser story as
input to the planning game. Estimates cover the effort
required to implement countermeasures to threats
described in the abuser story.
Refutation is to abuser stories what acceptance testing
is to user stories. Refutations demonstrate that
described attacks are impossible, or at least
implausible. Indeed, risk never goes away completely
as a system is never completely secure. However, risk
must be shown to have been reduced to acceptable
levels by refutation.
As assets are exposed through the functionality offered
by user stories, abuser stories only become pertinent
when at least one user story enabling the attack
described has been implemented. In the example
above, an abuser story covering the replacement of the
random process deciding the outcome of a gamble
becomes pertinent only when the gambling user story
is added to the system.

4.2. Planning

Implementing a user story increases the attack surface
of a system and consequently the risk of abuse.
Business value realized in an iteration must therefore be
adjusted with the cost of absorbing risk created by user
stories.
Introducing abuser stories allows business value to be
tracked more accurately and facilitates rational planning
of the effort required for security-related development.
As risk mitigation reduces risk absorption costs, but
requires effort, iteration plans for security-sensitive
projects would not only include user stories that will be
realized, but also abuser stories that will be refuted.

5. Writing Effective Abuser Stories

As has been stated, security requirements may be
described briefly and informally as abuser stories.
Although they are lightweight, low-effort and informal,
they are sufficient to trace requirements. However,
requirements traceability is but one of the necessary
conditions for good security assurance. This section
addresses two others, namely completeness and
accuracy.
A set of abuser stories is effectively the skeleton of a
threat model. Threat models have been discussed
extensively. Particularly their treatment in [5] brought
them to the attention of the development community.
Many of the ideas discussed in this section stem from
[1]. Its treatment of the discipline of security
engineering is inextricably bound with threat models.
This section describes practices which aid writing
high-quality abuser stories cost-effectively. Section 5.1
advises the involvement of as many people from
diverse backgrounds as possible. Sections 5.2 and 5.3
examine some of the sources of inspiration for abuser
stories.

5.1. Abuser Story Authors

User stories are written by customers. Customers
should also be involved in writing abuser stories, as
they are attuned to the business assets which need
protection. However, to achieve a good threat coverage
quickly, it is essential to draw on the expertise of
developers, because many hands make light work and
because developers' distinctive areas of expertise tend
to make them sensitive to certain types of threats
sooner than non-technical authors. Some of the
system's assets are, by definition, of a technical nature.
In the example of the gambling web site, it is likely
that customers will quickly come up with threats to
various accounts. For example, they may point out that
accounts holding users' gains must be protected from
attack. Threats to the randomness of the gambling
process, on the other hand, are more readily identified
by a developer.
So abuser stories depart from traditional agile
requirements engineering to the extent that they are not
exclusively written by customers, but jointly with the
development team. They reinforce the agile principle
of involving all team members in a broad spectrum of
activities. No-one is deemed to have a monopoly on a
given area of expertise.

5.2. Assets

Assets are a good starting point for writing abuser
stories. Anything of value to the customer which is
potentially accessible through the system, should be
considered a target. An asset may have intrinsic value,
such as money in a bank account, or it may derive its
value from its role in revenue generation, such as a
random process at a gambling site. The latter are

harder to identify, but will tend to show up when
examining who the attackers are, their motivation,
resources and expertise.

5.3. Attackers

The nature of an attack is largely determined by the
kind of adversary. It therefore pays to reflect on who
potential abusers may be. Pertinent factors include the
resources they command, their skills, motivation and
risk aversion.
Predators co-evolve with their prey and hence
sensitivity to the species that inhabit the customer's
ecosystem is required. The history of the customer's
industry is typically a good guide to the motivation and
even the attack techniques.
Skills and resources are, in a certain sense,
interchangeable as a resourceful adversary can hire
skillful mercenaries. Organized crime is a resourceful
adversary. So are intelligence agencies or terrorists.
However, their motivations are different and they will
go after different targets, use different techniques and
have a distinctive risk assessment.
Attackers are unlikely to invest many resources unless
they have a clear motive. At the other end of the
spectrum lie low-investment acts of vandalism.
Threats from low-skilled system users may have
devastating consequences. Secret gamblers using the
example gambling site may rather deny using the site
than settle their debts.
Customer staff are a rich source of inspiration for
potential attackers. The majority of fraud cases occur
with inside help.

6. Further Work

Abuser stories have served me well in a number of
assignments. However, they were used surreptitiously
without explicit management recognition of their role
in tracing security requirements. In this sense, the
concept has been proven, but the implementation is
missing.
While the current lack of requirement traceability is, in
my view, the greatest obstacle to providing security
assurance in agile processes, considerable work
certainly remains to be done on assurance as was
pointed out in [4]. Refutations as described in [6] may
prove to be a good foundation.

7. Conclusions

Abuser stories are a non-invasive extension to agile
practices providing security requirements traceablity.

8. References

[1] Anderson, R. J., Security Engineering. A Guide to
Building Dependable Distributable Systems, Wiley,
2001

[2] Beck, K., Extreme Programming Explained,
Addison-Wesley, 1999
[3] Beznosov, K., "Extreme Security Engineering: On
Employing XP Practices to Achieve 'Good Enough
Security' without Defining It,", First ACM Workshop on
Business Driven Security Engineering (BizSec), Fairfax,
VA, 31 October, 2003, also available at
http://konstantin.beznosov.net/professional
[4] Beznosov, K., and P. Kruchten, "Towards Agile
Security Assurance", Proceedings of The New Security
Paradigms Workshop ,White Point Beach Resort, Nova
Scotia, Canada, 20-23 September 2004, also available
at http://konstantin.beznosov.net/professional
[5] Howard, M., and D. LeBlanc, Writing Secure Code,
Microsoft Press, Redmond, 2003
[6] McDermott, J., "Abuse-Case-Based Assurance
Arguments", Proceedings of the Annual Computer
Security Applications Conference, ACSA Publications,
Silver Spring, 2001, also available at
http://www.acsac.org
[7] McDermott, J., and C. Fox, "Using Abuse Case
Model for Security Requirements Analysis",
Proceedings of the Annual Computer Security
Applications Conference, ACSA Publications, Silver
Spring, 1999, also available at http://www.acsac.org
[8] Van Cauwenberghe, P., and V. Peeters, The XP
Game, http://www.xp.be/xpgame/download.html
[9] Viega, J., and G. McGraw, Building Secure
Software, Addison-Wesley, 2002

